Spin and Orbital Moments and Magnetic Order in Fe3O4 Nanoparticle Assemblies
نویسندگان
چکیده
Spin and Orbital Moments and Magnetic Order in Fe3O4 Nanoparticle Assemblies Yanping Cai Department of Physics and Astronomy Master of Science Fe3O4 magnetic nanoparticles of 5 to 11 nm in size were prepared by organic methods. Particle size was analyzed by both X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) techniques. Zero Field Cooling (ZFC) / Field Cooling (FC) and magnetization loop measurements were recorded by VSM, and they confirmed superparamagnetic behavior in the sample. The blocking temperature is found to be in the range of 30 K ⇠ 170 K. It has a dependence on the particle size. ZFC / FC curves also indicate the presence of magnetic coupling between particles. X-ray Magnetic Circular Dichroism (XMCD) measurements of these nanoparticles were measured at 80 K and 300 K. By using the sum rules, spin and orbital magnetic moments were calculated from the XMCD signal. The results confirm a quenching orbital moment and a large spin moment. The calculated total magnetic moments are somewhat smaller than in bulk Fe3O4. Also, the spin moment at 80 K was found to be larger than at 300 K. X-ray Resonant Magnetic Scattering (XRMS) measurements at different temperatures, polarizations and fields were carried out. The intensity profile gives information on the interparticle distance between nanoparticles which is in consistent with TEM results. A magnetic signal was extracted by calculating the dichoric term, when the energy is tuned to resonant edges. This magnetic signal is confirmed by comparing the dichroic terms at different conditions.
منابع مشابه
Spin and orbital magnetic moments of Fe3O4.
We present measurements of the spin and orbital magnetic moments of Fe3O4 by using SQUID and magnetic circular dichroism in soft x-ray absorption. The measurements show that Fe3O4 has a noninteger spin moment, in contrast to its predicted half-metallic feature. Fe3O4 also exhibits a large unquenched orbital moment. Calculations using the local density approximation including the Hubbard U metho...
متن کاملبررسی خواص مغناطیسی تک اتمهای فلزات واسط 3d افزوده شده بر روی بورن نیتراید شش گوشی دوبعدی
In the frame work of relativistic density functional theory, using full potential local orbital band structure scheme (FPLO), the magnetic properties of single 3d transition metals (3d-TM) adsorbed on 2D hexagonal boron nitride (2D h-BN) are investigated. Binding energies between 3d-TM adatoms and 2D h-BN in three different compositions, local spin magnetic moments of 3d-TM and total spin magne...
متن کاملVanishing Fe 3d orbital moments in single-crystalline mag- netite
– We show detailed magnetic absorption spectroscopy results of an in situ cleaved high quality single crystal of magnetite. In addition the experimental setup was carefully optimized to reduce drift, self absorption, and offset phenomena as far as possible. In strong contradiction to recently published data, our observed orbital moments are nearly vanishing and the spin moments are quite close ...
متن کاملMapping magnetic fields of Fe3O4 nanosphere assemblies by electron holography
Crystalline Fe3O4 nanospheres with averaged diameters of 150 nm have been synthesized by a facile solvothermal method and characterized using transmission electron microscopy and electron holography. The nanospheres can self-assemble into either chain-like or ring-like shapes with sizes of a few micrometers, where large magnetic moments are found for individual particles at the remanent state a...
متن کاملمطالعه ابتدا به ساکن بلور CeIn3 در فشارهای بالا
Electric field gradients (EFG’s) at the In sites and spin magnetic moments at the Ce sites were calculated for the case of solid CeIn3. The calculations were performed by increasing pressure gradually from -5 to +22 GPa within the density functional theory (DFT) using the augmented plane waves plus local orbital (APW+lo) method employing the well-known PBE-GGA+U and WC-GGA+U schemes. The resu...
متن کامل